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Non-Newtonian Effects on Flow-Generated
Cavitation and on Cavitation in a Pressure Field!

ALBERT T. ELLIS AND ROBERT Y. Tine

University of California, San Diego

Observations are presented which show that the stresses in a flow field
of very dilute polymer are not well enough described by the Navier-
Stokes equations to accurately predict cavitation. The constitutive
equation for the particular polymer and concentration used is needed.
The second-order fluid form in which accelerations are relatively impor-
tant appears capable of explaining observed cavitation suppression by
changing the pressure field due to flow.

Bubble dynamics in stationary dilute polymer solutions are also ex-
amined and found to be little different from those in water.

In earlier work (refs. 1 and 2), the authors reported the suppression of
flow-generated cavitation in dilute polymers on cylinders with hemi-
spherical noses at Reynolds numbers from 7X10* to 3.1X10% Reduection
of the incipient cavitation number to 30 percent of its value for tap water
was observed. Flow velocity field visualization was achieved by optical
techniques using 1-microsecond light pulses scattered by polymer particles
or small polystyrene latex spheres in the flow. Dark field multi-exposure
photographs taken at 90 degrees to the direction of the light beam thus
provided reliable data on velocity field magnitude and direction and ruled
out the possibility of errors due to non-Newtonian effects on pressure
taps. Figure 1 shows the results.

POSSIBLE MECHANISMS

While it is believed that incipient flow cavitation suppression by dilute
polymers has been shown to be a real effect of considerable magnitude, the
correct mechanism involved is still to be proven. The main purpose of

! This work was supported by the Office of Naval Research, Fluid Mechanics
Branch, Contract N0014-67-A-0109-0007.
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FiGURE 1.—Cavitation inception parameter versus Reynolds number.

this paper is to report the results of early stages of a program which, it is
hoped, will accomplish this end in a systematic fashion.

It is still the opinion of the authors that cavitation suppression is due to
an overpressure existing in the region of the model where the pressure
would ordinarily be low enough to permit cavitation in the case of water.
This belief is supported by the fact that true velocities—both around the
model and along the axial streamline—obtained by the optical method
are as much as 10 percent higher than the velocities calculated from the
Bernoulli equation on the basis of pressure-tap readings upstream (in the
upper tank of the blow-down tunnel where the liquid is quiescent) and
flush with the wall of the working section. These details of the facility
and instrumentation have been described elsewhere (refs. 2 and 3). The
nozzle itself is based on designs of Stewart (ref. 4) and Tsien (ref. 5) to
provide a nearly uniform velocity profile across the working section.
Optical measurements—not including the boundary layer—indicate that
the nozzle apparently does this quite well, so that the flow approaching
the model is a uniform potential flow.

The absolute velocities measured by the optical technique show that
the pressure at the high-velocity end of the nozzle (measured by the
pressure tap flush with the wall at the working section entrance) is
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approximately 10 to 18 percent higher than that for water, depending on
the kind of polymers used. Over the range of 40 to 70 feet per second, the
error is independent of the flow velocity. For the three different sizes of
pressure taps tested—12, %, and ¢ inch in diameter—the error increases
very slightly as the sizes of the pressure taps decrease. Samples from the
various runs of polymers were monitored for degradation by testing drag
reduction in a portable hydrating apparatus kindly supplied by Dr.
Hoyt of the U.S. Naval Underseas Research Center, Pasadena. It should
be especially noted that the sign of the error is positive rather than
negative as has been shown to be the case for pressure-tap error both
experimentally and theoretically by Professors Tanner and Pipkin (ref. 6)
of Brown University for low-speed polymer flows.

It is believed by the authors that the errors observed in reference 2 are
not primarily pressure-tap errors, but, rather, that the Bernoulli equation
must contain a correction term. An analysis made by the authors based
on the second-order fluid model for the extensional flow along the center
streamline through the nozzle gives an expression for the pressure of

the form:
du\*  du

where P is the free-stream pressure and is made up of Py, the free-stream
pressure for water, and a correction term involving «, one of the material
constants of the second-order fluid model represented by equation (7),
(which may be different for various solutions), the velocity along the
central streamline, u, and its spatial derivatives, du/dz and d?u/dz%. It
should be noted that this correction to the pressure may thus be positive
or negative. In our experiment, u, du/dz, and d?u/dz? were such that, if «
were given the value of —0.01 dyne sec?/cm? taken as a representative
value in the literature, then the pressure correction would be positive, as
indicated by our working-section pressure-tap reading. It is not proposed
that the second-order fluid is a correct model in all situations, but rather
that the truncation in its theoretical derivation permits us to obtain a
solution which may be used to explain our experimental results.

The idea that polymers may affect other than turbulent pressure fields
has also been advanced by various persons such as Professor John Lumley
(ref. 7) and Dr. Arndt in his discussion of the authors’ previous work
(ref. 2).

It was also suggested by Dr. Fabula in his discussion (ref. 2) as well as
by Professor Tanner (ref. 8) that the suppression of cavitation inception
might be due to effects of polymers on individual cavitation bubble growth
or collapse. This possibility had also occurred to the authors, and it was
therefore decided to pursue theoretical and experimental work to assess
the validity of this concept. The theoretical study of a perfectly spherical
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bubble is obviously attractive because of its symmetry, which greatly
simplifies the analytical solution for the bubble radius as a function of
time. The solution for water was obtained by Lord Rayleigh in 1917 for
the case of a vapor bubble and for one containing an isothermal permanent
gas (ref. 9). Many investigators have since covered more complicated
aspects of the problem, such as the effect on growth of heat transfer
(refs. 10, 11, and 12); the basic stability of the spherical interface (ref.
13); and the formation of jets due to pressure gradients (ref. 14), wall
proximity (ref. 15), or both (ref. 16). Fortunately, for the purposes of
this paper, it turns out that a spark-generated bubble in a stationary
liquid at one atmosphere pressure does remain quite spherical until a
rather late stage in its collapse. During this period it follows the simple
Rayleigh theory very well, as demonstrated by the experimental part of
this paper. Any gas from the spark simply does not have an observable
effect until later stages of higher compression are reached. Of course the
spark must be of short duration (one microsecond in this case) so that
thermal equilibrium is attained when maximum radius is reached. Theo-
retical curves are not given for the growth phase, since the simple theory
used may not apply to the experiments. However, any marked effect due
to extensional flow or viscoelastic effects should show up during collapse
as well as growth, and the authors have therefore confined their attention
to this regime.

THEORETICAL STUDY OF BUBBLE COLLAPSE

Consider the problem of a single bubble collapsing in an incompressible
liquid of infinite extent. The vapor bubble is taken to be spherical at all
times. Gravity effect is neglected. Thermal equilibrium is assumed such
that the vapor pressure inside the bubble is uniform and equal to the
equilibrium vapor pressure of the liquid at the liquid temperature.
Spherical coordinates are chosen with the origin at the center of the
bubble, which is at rest. The radius of the bubble at any time tis R=R(t),
and r is the radial distance to any point in the liquid as a spherical co-
ordinate system (r, 8, ¢) is taken. The velocity will only have one com-
ponent in the radial direction, i.e.,

V=ue, (2)
For an incompressible liquid, the continuity equation is

ou_ 2u_
ar T

(3)

which gives
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Q)

u=u(r, t)=—7_2— (4)

For the bubble dynamics problem it is generally given as

RX(t)R(t
u=ZOEO, 5)
r
The governing equation of motion is
ou ou d a rr 2 e -

p—-+pu—=——2+—o— S0rr— T Ty (6)

at ar ar  Odr

where p is the hydrostatic pressure and o,,, 0%, and o, are the normal
stress components of the deviatory stress tensor [¢;;], which is related to
the strain-rate tensor [e;;] by the specific constitutive equation the
liquid obeys.

The dilute polymer solutions of interest may be slightly viscoelastic
(ref. 18). To predict their behavior involving viscoelastic effects, two
gencrally accepted models for viscoelastic fluids are analyzed in the
following.

Second-Order Fluid Model

A second-order fluid model proposed by Markovitz and Coleman (ref.
19) has the constitutive equation of the form

i = peij ¥+ e +BenVer ;¥ (7)
where u is the Newtonian viscosity, « and 8 are material constants, and
e;; V= vi v

De;,»‘"‘l)

€M = Feiw™ vy, i+ e Ve s

For the present problem, the strain-rate tensor is

du 00
or
u
[G;j]= 0 ; 0 (8)
Uu
0 0 -
r
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By substituting equation (8) into equation (7), it can be noted that the
second normal stress difference vanishes:

oop—04p="0

and hence the relation
2a+8=0 9)

is used to simplify the analysis (ref. 19). By using equations (4), (7),
and (9), equation (6) becomes
ou du dp 8Sadu d*u
— —————— —— 10
P T T "o 3 ar o (10)
Substituting equation (5) into equation (10) and integrating over
(R, »), the result is

RR+ R—

16y (R);w (11)

3 \R p
where () =d/dt, y=a/p with a dimension of [length]? and P(») =P,
is the constant pressure at infinity. The hydrostatic pressure P(R) is

eliminated by applying the boundary condition at the bubble wall; i.e.,
at r=R,

2
Pv—§”= — 0 (R)

ou %u %u Ju\’
=P - — - —_— ——21 — 12
(R)—2u [8r ]r=R 2a [6t6r+u ar? 2 <ar> ],:R (12)

where P, is the vapor pressure inside the bubble and ¢ is the surface
tension.

Combining equations (11) and (12), the equation governing the
collapsing process of the bubble is obtained.

3 207\ 5, R P,—P.—(20/R)
( )R+<2 3R2>R—|—4 . . (13)

where »=pu/p is the kinematic viscosity of the fluid. For the special case of
=0, equation (13) reduces to the classical bubble equation in a New-
tonian fluid (ref. 11).

R P,—P,—(2¢/R)
p

RR+ R2+4 (13")

From the prediction of molecular theory, ¥ or a is negative (ref. 20).
Consequently, equation (13) shows that under the same pressure differ-
ence P,— P,, the bubble in a non-Newtonian fluid obeying the constitutive
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relation, equation (7), of the second-order fluid model will collapse more
rapidly than in the Newtonian fluid.

Oldroyd Three-Constant Fluid Model

Oldroyd (ref. 21) suggested the following constitutive equation for a
viscoelastic fiuid:

atT.“ 30’," R €;; 06,
aii+M [ vy _'_J_O'ikejk—a'kjeik]=2ﬂ I:eij+)\2< L k 2e,~kek,~>]

ot ome T
(14)

where )\; and A, are two material constants, both having the dimension of
[time] and a positive sign.

Due to the special form of the strain-rate tensor in this problem, the
shear stress components o, o¢,, and o,, vanish, and the normal stress
components og and o,, are equal. Using equation (5), the stress com-
ponents ¢, and o,4 are determined by the following relations:

dorw RR 0o, (1  ~RR 4p R°R R 2R RR
s +(;+47)a,,=— e [1+x2< ot )]
1

ot r* or M
(15)
Ga'w R°R d0,, (1 RLR) 2u RR[ (R 2R @>]
T e T M 25 APV e Gte° %
(16)

Equations (6), (15), and (16) are thus the governing equations for the
bubble-collapsing problem. It was found convenient to introduce the
transformation to Lagrangian coordinates (ref. 10):

—3P-R®] (17)
Then equations (15) and (16) become

b (L R), R (B2
dt +()\1+4 " )‘Trr_ N ” L4A R+ R+ ” (18)

do, (1 R2R> 2 R R[ (R 2R R2R)]
e (——2= =)0, = +o =5 19
0t >\1 -2 ) Tee= N + A2 " (19)

which are readily integrated to obtain

{[3h+R3 (T) ]1/3

o',.,(h t)_____ / eT—t /M RZ( )R(T) [3h+R3(t)]4/3

1-'0

}{1+)\2M,,(h, )} dr

(20)
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_g\,’f t —t) /M1 2 . W}
ope(h, t) —)\1‘ /; emvM B2 ()R (r) {[3h+R3(1')]5/3 {14+2M (R, 0} dr
(21)
where
_R(T) 2R(7-) le(T)R(T)
Mn-(h, 7') —R(T) + R(T) T3h+R3(1-) (22)
M,y ry <D 2RO BOED (23)

R(r)  R(r) = 3h+Rr)

Substituting equations (20) and (21) into equation (6) written in terms
of the new coordinates (h,t), and integrating over the range from
h=0(r=R) to h= o (r= ), the result is

p(RR+3R?) +4u g =P,,—Pa—%"+f—l“ (AMi—A2)
C ol BO\RD B
x [ ee-on [(HRa(z))R(t) 3 Ry B ]d’

(24)

The first term in the integral' of equation (24) is integrated by parts,
and by using the initial condition

R(0)=0 (25)
for the bubble-collapse problem, equation (24) reduces to the form

RR+§ R2+4VA—Z-I—B+PG—PD+(20-/R)
2 MR P
2y A\ i/ R(r) [ Rs(r)]
L . r—on ) g 26
~ (l x)/ TOl RI0 N

For the Newtonian case, As/A\—1 and equation (26) again reduces to
equation (13'). In general, \; is less than \,. With the appropriate inter-
pretation of the material constants g, A1, and A, (ref. 22), it is shown that
the third term on the left of equation (26), the viscous damping term, is
not changed with respect to the Newtonian case. The viscoelastic memory
integral on the right-hand side then appears to have the effect of slowing
down the collapse. However, by a dimensional analysis it can be shown
that, in the situation of a collapsing bubble, the magnitude of the visco-
elastic correction term—as well as that of the viscous damping term—is
too small to affect the collapse process in any significant way.
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While the two constitutive relations used give different results, the
authors believe that the conclusion deduced from the Oldroyd fluid will
be more applicable in a real physical situation in the viscoelastic fluids.
It has been suggested that the Oldroyd model is superior to the second-
order model at higher strain rates (ref. 23). Indeed, the inadequacy of the
second-order fluid model is not surprising; sinee it is generally known to be
a poor model for unsteady flows involving short deformation periods
(ref. 24), in which cases the results could lead to paradoxes (ref. 25) and
questionable mathematical solutions.

EXPERIMENTAL PROCEDURE

A cubical lucite tank 30 centimeters on a side was used to contain the
liquid. The flat walls avoided optical problems, and the tank was large
enough that the 1l-centimeter-diameter, spark-generated bubbles would
not suffer from wall proximity effects. Small tungsten wires were used for
the underwater spark gap. These may be seen in the bubble photographs
of figure 2. It may be noted that there is negligible departure from a
spherical shape. The spark was formed by discharge of a 0.04-F capacitor
charged to 14 000 volts through a 5C22 hydrogen thyratron which
allowed current to flow in one direction only, so that there was a single
pulse of about a microsecond duration without any subsequent current
oscillations. This was important in order to obtain essentially a delta
function of heat energy to grow the bubble in a steady one-atmosphere
pressure field. These conditions are essential to simplify the analysis.
The bubble photographs of figure 2 were taken at a repetition rate of
10 000 per second or 100 microseconds between frames. The bubbles were
back-lighted by a xenon flash lamp operating at } joule per flash and a
1-miecrosecond duration. The pulsing was also done by a 5C22 hydrogen
thyratron. It was realized that such a slow rate would not give much
detail for the radius/time curve, but the high-speed photographic equip-
ment had not yet been reassembled. It was thought that any gross effects
caused by the polymer solutions would still be evident.

The spark gap which generated the bubble was fired at random times
with respect to the photographic frames, and at least five runs were made
for each solution. This is evident from the bright spot caused by the spark
at the beginning of each sequence. (Apparent bright spots near the
bubbles’ centers are due only to the back-lighting.) The pictures were
taken on a rotating-drum streak camera without any mechanical shutter
or optical compensation for the speed of the moving 35-mm film. As can
be seen from these contact prints and the accompanying scale, the film
speed was about 12 000 centimeters per second. Tri-X film and D-19
developer were used, and the lens was of 10-inch focal length stopped
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b.—Fresh 100-ppm Polyox.

c.—Aged 100-ppm Polyox.

d.—Aged 1000-ppm Polyozx.

e.—Fresh 300-ppm Guar Gum.

f.—Scale in centimeters.

F1GURE 2.—Growth and collapse of spark-generated bubbles in various solutions (picture
rate is 10 000 per second).
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down to f16. All runs were made at one-atmosphere pressure; hence no jet
formation was observed, in contrast to earlier work performed by Benjamin
and Ellis (ref. 16) at the University of Cambridge. The difference was, of
course, due to the lower ambient pressures used in the latter experiments.
The ratio of pressure gradient to pressure is the pertinent parameter for
jet formation in bubble collapse far from boundarics. Bubble photographs
for five runs of each solution (fig. 2 shows representative sequences) were
measured on a precision traveling microscope with a readout of 10—*
centimeter per division.

RESULTS AND DISCUSSION

The experimental results for the radius/time curves of the different
solutions are plotted as points on figures 3, 4, 5, 6, and 7. The dimension-
less radius, R/R, (where R, is the maximum radius), is the ordinate;
the dimensionless collapse time, t/r (where 7 is the Rayleigh theoretical
collapse time for a bubble of the particular Ry observed), is the abscissa.
The solid lines are theoretical curves obtained on a computer for the
second-order fluid model with v =0 (which reduces to the Rayleigh theory)
and y= —0.01. Time was not available to compute a corresponding curve
for the Oldroyd model.

It may be seen that figure 3, the case for water, followed the correct
Rayleigh curve quite well, which was taken to be a good check on the
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FiGUure 3.—Ezxperimental points and theorelical dimensionless bubble collapse curves
for water under atmospheric pressure.
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Fi1GURE 4.—Ezperimental points and theoretical dimensionless bubble collapse curves for
fresh 100-ppm Polyor under atmospheric pressure.
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Fi1GURE 5.—Ezperimental points and theoretical dimensionless bubble collapse curves for
aged 100—ppm Polyox under atmospheric pressure.
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F1GURE 6.—Experimental points and theoretical dimensionless bubble collapse curves for
aged 1000—-ppm Polyoz under atmospheric pressure.
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FiGure 7.—Ezperimental poinis and theoretical dimensionless bubble collapse curves for
fresh 300-ppm Guar Gum under atmospheric pressure.
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validity of the experimental method. However, the polymer solutions also
seemed to follow this curve fairly well. The exceptions were run 2 of the
fresh 100-ppm Polyox series (fig. 4), which collapsed faster in agreement
with second-order theory, and run 3 of the aged 100-ppm Polyox (fig. 5),
which collapsed more slowly than water. It is regretted that only five
runs for each system were made, but time was not available. However,
with four runs out of five agreeing, it is felt that these single runs should
be discounted.

SUMMARY AND CONCLUSIONS

Theoretical expressions for a spherical cavity collapsing in a stationary
infinite fluid are derived for liquid constitutive equations of both the
second-order and Oldroyd types. These reduce to the classical Rayleigh
result if the non-Newtonian parameters are set to zero. Both models
predict that bubble collapse will be different relative to the case for water;
however, the difference will be very small due to the low concentrations
used.

Experimentally obtained collapse curves show little difference from
water and thus indicate that—for the concentrations used and for the
resolution of the experiment—the effect of dilute polymers on local bubble
dynamics is negligible. It is reasonable to expect normal stress differences
to have some effect on bubble dynamics, but preliminary computer results
show their maximum magnitude to be only about 1 percent of ambient
pressure for these experiments. This tends to support the authors’ present
view that cavitation suppression by polymers is due to changes of pressure
in flow fields. Future work is planned to properly measure the tractions on
solid surfaces in flow, since this appears to be of prime importance.
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DISCUSSION

J. L. LUMLEY (The Pennsylvania State University): The authors,
Ellis and Ting, are to be commended for a particularly clear combination
of calculation and experimental work. I agree fully with the conclusions
which they draw therefrom. At the same time, I feel that the analytical
basis on which their conclusions rest is somewhat open to question and
would not provide a suitable basis for future work.

My comments relate primarily to the choice of constitutive relation.
The second-order fluid model used by the authors is likely to be a poor
model, since it includes only in a rudimentary way the effect of molecular
extension, which seems likely (ref. D-1) to be responsible for the large
effects observed in these very dilute solutions. A much better model is
provided by the Oldroyd equation (ref. D-2), which can be shown to be
based on a dumbbell model of the molecule (the form of the equation
quoted by the authors is correct only in an irrotational flow; see ref. D-2
for the complete equations). In this way, the constants used by the
author may be identified as

>\1= T
A=T/(14c[n]) (D-1)

#=uo(14c[1])

where T is the molecular terminal relaxation time, ¢ is the concentration,
[#] is the intrinsic viscosity, and u, is the solvent viscosity. Substitution
of these values into the authors’ final form (eq. (26)) indicates that the
coefficient of the viscous damping term
A
gl 4 (D-2)
M P

is the value for the solvent alone, so that the viscous damping is un-
changed. Hence, the only effect lies in the viscoelastic memory integral,
having a coefficient of

2p0c[n]

T (D-3)

The authors’ conclusion that this would slow the collapse, but is ordinarily
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quite small, certainly appears to apply during the early stages of the
collapse; as the bubble closes, however, and the strain rate rises to quite
large values (relative to 1/27T'), this term may slow the final stages appre-
ciably. Numerical calculations appear to be warranted.

The same remarks relative to the constitutive equation can be made in
connection with the authors’ ealeulation of the pressure in a eontraction.
In the quasi-steady case, using the Oldroyd equation, it is possible (refs.
D-3 and D-4) to obtain an analog of the Bernoulli equation applicable
on the centerline:

. weln] 28T 2 (1-28T .
P=Py+=7 {(1—2ST)(1+ST)+31"<1+ST>} (D)

where S is the local strain rate (287 <1) and the additional term can be
shown always to be positive, in agreement with the authors’ observations.
From the derivation of equation (D-4), it appears to be a bound (for an
Oldroyd fluid) in the sense that the deviation from Py cannot be more
positive than this. ’

R. E. A. ARNDT (The Pennsylvania State University) : The authors
are to be congratulated on presenting an excellent sequel to their original
work (ref. 2), which demonstrated a non-Newtonian effect on cavitation
in essentially irrotational flow. In the discussion of that previous paper, it
was pointed out that the observed delay of cavitation inception could be
a result of either a reorientation of the flow field or a change in the bubble
dynamics. Apparently this paper is the first in a series of steps toward
isolating the one or more mechanisms involved.

With this in mind, one must focus attention on the basic question at
hand—namely, what causes the observed reduction in the value of
incipient cavitation index based on upstream velocity and pressure?
This paper considers the possibility of an effect on the bubble dynamics
by polymer addition. Presumably such an effect is small, and this dis-
cussant’s intuition agrees with the authors’ conclusion on the point. This
conclusion, however, is based on the evidence that relatively large spark-
generated bubbles collapse under atmospherie pressure in a manner which
appears to be relatively insensitive to the presence of small quantities of
polymer. Two questions immediately arise in extending this result to
consideration of cavitation inception: First, is there a “size effect’’ for the
onset of viscoelastic phenomena in bubble dynamics? Second, is there an
effect on nuclei distribution with the addition of polymers? What this
discussant has in mind is that a spherical bubble expansion or collapse
Induces an axisymmetric strain, the magnitude of which probably in-
creases with a decrease in bubble size. Presumably a critical value of rate
of strain must be reached before viscoelastic phenomena become evident,
and experiments with large bubbles may not be in the right size range for
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observation of any effect. This second question is not the subject of this
paper and will require further investigation. As with any good piece of
research, the paper has generated several new questions to be answered.

M. S. PLESSET (California Institute of Technology): Ellis and Ting
have given convincing evidence that dilute polymer solutions in water do
not have a significant effect on the collapse of cavitation bubbles. It is
indeed of interest that their measurements show radius/time curves that
are essentially the same as those which they observed in pure water.

Also of importance is the authors’ theoretical analysis, which points in
the direction of faster collapse than for pure water. Here they do not find
experimental evidence that indicates any speeding up of the collapse in
the polymer solutions.

It is perhaps not surprising that the dilute polymer solutions show no
significant, effect in cavity collapse. We are familiar with the fact that
ordinary viscous effects are not important for growth or collapse behavior
in liquids of low viscosity such as water. It is, however, useful to have this
result as well for the non-Newtonian liquids used by the authors.

Some experiments performed in our laboratory at the California
Institute of Technology support the conclusion of the present paper.
Using some polymer solutions prepared by Dr. Hoyt of the Naval Under-
sea Research and Development Laboratory, we measured cavitation
damage rates in an oscillating magnetostrictive device. We observed no
differcnee between the damage rate with pure water and the damage rate
with the dilute polymer solution. In the light of the study of Ellis and Ting
this observation is very satisfying. However, our experimental findings
with the oscillating magnetostrictive device are not of themselves con-
clusive, since it is to be expected that the pressure oscillations generated
in thosc experiments would produce some degradation of the drag-
reducing additive.

ELLIS anp TING (authors): We agree with Dr. Arndt and Dr.
Lumley that the scales in our experiment are not such as to show up
non-Newtonian effects until later stages in the collapse, and this is also
evident from our theory. However, the assumption of spherical symmetry
would be invalid if we observed the collapse at later stages in these
experiments.

We also agree that the Oldroyd constitutive equation is more applicable
than the second-order fluid model. That is why we derived the bubble
collapse equation using the Oldroyd model. The second-order model was
also included for comparison in the bubble problem and was used for
obtaining the venturi pressure drop. It is agreed that the expression given
by Dr. Lumley is probably more accurate, but the qualitative results of
both models are the same—including the algebraic sign of the pressure
correction term.
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It should be pointed out that the rotational terms in the Oldroyd
equation are well known, but were not included here because the flow
considered is irrotational.

Dr. Lumley, in his discussion, gave an interpretation of g, A, and A,
based on a molecular model which was unknown to the authors at the
time the paper was written. This interpretation leads to the conelusion
that bubble collapse will be slowed down relative to collapse in water.
However, the difference could still be too small for our experiment to
detect, and there is no contradiction to the results obtained by Dr.
Plesset even if degradation was not present.
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